

- 1 -

A Hiker’s Guide to Web Development
Steve James, Centers for Disease Control and Prevention, Atlanta, Ga.

ABSTRACT
Building web applications using SAS/IntrNet® Application
Dispatcher is a lot like hiking. At first, it is hard. You
struggle getting used to your equipment and the new
terrain. Then it gets easy as you settle into a pace you like
and get into a rhythm. Then it gets hard again as you tire
and have to make that final push towards the finish.
However, once you get there you can sit back, relax and
enjoy the rewards of your efforts.

If all that is true, then how should you do it? What can you
expect along the way? What kind of equipment do you
need and whom should you take with you? This paper is a
trail guide for developing web applications with Application
Dispatcher and describes the process, pitfalls and
practical issues that you can expect to encounter. Specific
topics that are covered include system analysis and
design, learning Application Dispatcher, coding issues,
usability, security, and final deployment.

This paper is designed for users at all skill levels working
on all operating systems.

INTRODUCTION
This paper describes the process of developing a web
application and some of the issues that must be
addressed. Using the analogy of a hiking trip, the
following topics are discussed:

• Why go in the first place?
• Planning the Hike
• Hiking Companions.
• Training for the Hike
• “Doing” the Hike
• Finishing the Hike

While explaining some of the benefits of a web application
the central point of reference for this paper is an
environment where IT staff produce ad-hoc reports. This
paper borrows heavily from the author’s experience in
such an environment and the development of a web
application called WISQARS. Several examples in its
development are cited. Web development in other
environments will be similar to what is described here but
may have a slightly different set of benefits and
challenges.

WHY GO IN THE FIRST PLACE?
Why go on a web application development “hike?” Mainly
because it’s fun. But normally that excuse doesn’t satisfy
your boss to justify embarking on such a journey or for
purchasing a SAS/IntrNet license. What can you hope to
gain in this endeavor?

BENEFITS
There are many reasons to consider developing a web
application using Application Dispatcher, they include:

• More users have access – Worldwide coverage
of the Internet assures more people will have
access to data than could be accommodated by
ad-hoc requests.

• Empowers the Data Users – Users can get the
information that they want quickly and accurately.
It allows the user to interact with the data without
repeated requests to the programmer.

• Business rules are enforced - Appropriate logic
and analysis procedures can be used to ensure
that the correct results are produced.

• Reduces the number of Ad-Hoc Requests -
Programming staff are relieved of the burden of
ad-hoc requests and can focus on more pressing
IT needs.

• Leverage existing SAS Skills
Using Application Dispatcher allows you to
develop applications without the need to learn an
additional language like Java with WebAF™.

SUCCESS STORY – INJURY STATISTICS FROM CDC
Prior to 2000, Injury statistics were available from CDC
only from a limited number of static web pages and ad-hoc
requests. In March 2000, CDC launched a web-
application called WISQARS (pronounced “whiskers” for
Web-based Injury Statistics Query and Reporting System
– www.cdc.gov/ncipc/wisqars). It provides information on
fatal and non-fatal injuries, and leading causes of death in
the US. Since its development, WISQARS now:

• Handles an average of 1,000 requests per day
• Has over 1,500 references in Google search

engine from places such as Children’s Safety
Network and Johns Hopkins School of Public
Health.

• Allows automatic generation of reports previously
unavailable, such as those with non-standard
age-groups (e.g. teenagers: ages 13-19)

• Has dramatically reduced ad-hoc requests.
• In 2001 became the platform for reports on non-

fatal injury data, which had not been previously
available.

By virtually any measure, WISQARS has been a huge
success, not so much from the application itself but that it
allows people to get access to the data that they need and
want. Using Application Dispatcher CDC has been able to
come up with a system that does more with less and that’s
a success by almost any measure.

PLANNING THE HIKE
In the “Planning the Hike” stage, also known as system

2

analysis and design, you determine where you are, where
you want to go, and what is the best way to get there. This
stage is by far the most important but also the one most
likely to be shortchanged. The following steps listed here
are essential to the success of your system and will be
discussed in detail.

• Where am I now?
• Where am I going?
• How will I get there?
• How we really do it.
• Web-application issues
• Other issues
• Summary

The overall goal of this planning phase is to determine all
of the requirements of the system up front before actually
starting to build it. Problems that cost only $1 to solve in
the design phase can cost $1000 to solve in the
implementation phase. In the design phase it may be
simply changing a number in a document, rather than re-
writing lines of code and changing databases. Careful
planning is designed to eliminate those costly fixes.

It should be noted that this is not the only way to do
system analysis and design. There are other models to
use such as Prototyping, Spiral and Rapid Application
Development (RAD). This approach described here most
resembles the waterfall method.

WHERE AM I NOW?
The “Where am I now?” question is really a host of
important but simple questions. You will want to ask these
questions:

• Who are the staff available to work on the project
• What is their skill level?
• What software and hardware do you have for your

project?
• What kind of budget do you have?
• What is your staff’s experience on projects like this?

Generally, more is better. The larger the staff, the bigger
the skill set, and the bigger the budget makes the trip a lot
easier than those with small staff, little skill and little or no
budget. Making this determination up-front will allow you
to scale the application properly.

WHERE AM I GOING?
Like the “Where am I now?” question, the “Where am I
going ?” question is where you determine of the specifics
of what the system will do. Questions include:

• What will the system do?
• Who are the users we’re trying to reach?
• What specific information must the system provide?

HOW WILL I GET THERE?
When all of the “Where am I going” and “Where am I
now?” questions are completely answered, you can begin

to tackle the “How will I get there” question. This is the
creative step in the process where you get to figure out
how to get from where you are to where you want to be.
Spend a lot of time brainstorming about possible solutions.
Think about all the possibilities that you could choose. Do
not bias yourself too much at this point. Some of us have
tunnel vision in this area and can think only of solutions
that deal with SAS and/or web applications. It blinds us to
novel and innovative ways of solving problems.

Moreover, do not let your lack of technical expertise
influence the design excessively. You may be tempted to
omit a feature for your application because you do not
know how to implement it. The system may be better
served if you allow for that feature but add it later. You
don’t want to limit your system by what you can do at the
moment. Try to differentiate between things that you can’t
do and what SAS can’t do, and exclude only the later from
the design rather than the former.

HOW WE REALLY DO IT
If we were to hike the way some of us develop systems,
we’d end up starting out ill prepared and having to come
back several times for additional equipment or directions.
Even worse, we might find ourselves out too far to go back
and end up forging ahead and ending up with a
round-about route to our destination that was twice as far
and twice as hard as it needed to be. You need to ensure
that you have determined all of the requirements of the
system before you begin developing a solution for it.

Suppose you need to go from Georgia to Maine within the
next twelve months. You decide to hike the Appalachian
Trail. After weeks of buying equipment, reading maps,
and doing short weekend trips, you are about to start your
trip. Then you find out that you omitted one detail: you
need to take a grand piano with you! Because you did not
find out all of the requirements up front, your weeks of
preparations were all wasted.

A real-life example of this occurred during the
development of WISQARS. An on-site contractor decided
that he wanted to write his own version of one of the
reports that WISQARS was going to produce. Moreover,
he was quickly able to develop a system that did the
report. However, his system used only the most recent
three years of data, and to accommodate all the possible
requests a user might make, he created a SAS dataset for
each possibility (e.g. a dataset for years 1, 2, 3, 1-3, 1-2,
and 2-3) for a total of six datasets. He did this to speed
response time because the data would already be
summarized by how it was reported. However, what he
did not take into consideration was that the system needed
to be able to report on as many as the previous 20 years.
To do that his system would have had to create over 200
datasets in the first year, 300 datasets in year 5 and more
each year after that. Maintenance of that system would
have been a nightmare. Had he more thoroughly
determined the system’s requirements he would have
designed his system differently.

WEB APPLICATION ISSUES

3

For web applications, there are other questions that must
be addressed. They include:

• Who and where are the users?
• Minimizing response time
• Accessibility concerns

Who and Where are the Users
Whether or not your application is only available within
your company, available to only selected outsiders, or
available to everyone is important. For one, if affects how
many people might be using your system at any one time,
which in turn will impact response time (see “Response
Time” below).

Secondly, if your application is used by those outside your
company, you may not be able to specify specific browsers
for those using your application. CDC commonly has
users with older versions of browsers (e.g. version 4 of
Internet Explorer™ or Netscape™ or earlier). If they
cannot access the system, they voice their concern. You
might be tempted to think that it is a non-issue because
anyone can get the newest version of many browsers for
free, but in practice you can’t always force people to use a
specific browser on your application.

Also, for intranet/extranet applications, you may be
tempted to assume a higher degree of familiarity with the
data, although this should be discouraged. Usability
testing has shown that even experienced public health
professionals have trouble with so-called obvious
instructions on the CDC website. Alternatively, it may be
another staff person doing the query for the intended
target audience and be unfamiliar with the terms. In
general, you rarely go wrong by trying to underestimate the
knowledge of your users.

Response Time
In an ad-hoc environment, you likely did not concern
yourself with response time. Since the people making the
request were not standing over your shoulder (or were
they?), whether the system took a few seconds or a few
minutes was not very significant. However, in a web
application, it matters a lot. Users tend to loose
concentration after ten seconds, so it’s good to try to make
most if not all queries faster than that. Users may be a
little more tolerant of delays on the web from other
interactive environments since even static pages
sometimes can take 20-30 seconds to load. However,
response time will likely be a key element in how you
design your system.

One way to reduce response time is to pre-summarize the
data using PROC SUMMARY. This type of solution works
particularly well if your data are static. At the CDC it’s
common to receive data files from various organizations
on an annual basis. These data rarely change once
issued. Once released, you can summarize the data all
the possible ways it can be reported, store the results in a
SAS dataset and then create indexes to speed retrieval.
Your application then simply fetches the already-
summarized data and displays it to the user. Other

solutions might include separating the data based on how
it’s retrieved or upgrading the hardware.

Accessibility
Section 508 (accessibility) compliant applications are
those that provide a “comparable experience” between
those who have handicaps and those who do not. One
aspect of that is to make sure your application can be
used by text readers that essentially dictate the text of your
web page to the user. In addition, it is important not to use
color as a means of conveying information, since a
significant number of people are colorblind. That does not
mean you can only use black and white pages, but you
wouldn’t want your application to have instructions like
“For report 1, press the red button, for report 2, press the
green button…”

The impact of this requirement can be quite significant. It
may even entail your developing essentially two different
versions of your web application, one compliant and one
that is not. Your webmaster would be the best person to
help with these issues (see discussion on the webmaster
in the “Hiking Companions” section below).

 OTHER PLANNING ISSUES
There are a number of other planning issues that need to
be discussed. A partial list and discussion of them follows.

Documentation
One important point is that it’s good to write down all of
these “Where am I going?” questions and answers so that
there can be clear communication between you and the
other stakeholders of the system. Writing it down helps
everybody understand what the final system will do. If you
have it written down in a document and all parties agree,
then you have objective criteria on which to judge the
success or failure of your system. Additionally in writing
the documentation, questions will arise that illustrate
situations or conditions that you hadn’t thought of and
need to account for.

Breadcrumbs
While it didn’t work out so well for Hansel and Gretel,
documenting how you get to your final destination is a
good idea. Record why you chose a particular path over
another at significant points in the process. It will save you
the hassle of retracing your steps should you need to
revisit a decision. There was the story of the team
designing a weapons system for the US Government and
came to the point where they felt they needed to go back
and determine why a particular path had been taken over
the available alternatives. It cost $1 billion to determine
why they had chosen what they did. One could only
imagine how much time, money and effort could have
been saved if someone had taken even just a few
moments and written down some of the reasons for the
decision on a piece of paper.

Data Dictionary
One item in this process that can be extremely helpful is a
data dictionary. Not only does it provide definitions for
terms to those that are not experienced in the subject
matter, it also forces some questions that need to be

4

asked while preparing it. Even for a variable as simple as
Sex, there are a number of questions to be answered
about its length, its type (character or numeric), presence
or absence of missing and/or unknown values, etc. It also
becomes a useful guide when programming because the
data elements attributes are already defined.

Data Updates
It is important to consider the impact of the design on
adding additional data to your system. For instance, if you
update your system annually with new data, you may want
to store each year’s data separately. When new data are
received, you can add them to the system without affecting
the other data that’s already been loaded and tested. You
can test the new data separately. That’s a big benefit.

Naming Your System
Another seemingly trivial but in fact important tip is to pick
a “cool” name for your system, and pick it as early as
possible. Once a name gets associated with a product, it’s
very hard to change it. With the development of
WISQARS, that name was given fairly early, and a logo
was even designed for it. It made a difference in how the
system was received. The converse of that was a group at
CDC that was stuck with the name SLUGs (for SAS Lead
User Group) and it was never able to get rid of it despite
how unpleasant sounding it was.

Testing
Testing a system once it’s completed is often a difficult
task in that it’s hard to know if you’ve covered all of the
bases. A good technique is while developing your system
requirements, write test cases for each requirement. For
instance, you may have a business rule that defines every
number above a certain level as being statistically
significant. These numbers should be noted on the report.
What you would then want to do is to have a test
document and add to it a check to see if numbers are
appropriately flagged as significant or not.

HIKE PLANNING SUMMARY
The key idea to convey about planning is you’re attempting
to uncover all the requirements of the system as early as
possible so that you can most easily accommodate them.
Addressing these problems in a requirements document is
a lot easier than after SAS code is written. In addition,
remember that all of these questions have to be answered
at some point anyway. At some point, for instance, you’re
going to have to decide how the variable SEX is defined.
Answer these questions in the design phase when the
decisions can be changed without adversely affecting the
system.

Clearly a lot more can said about both the system analysis
and system design that goes into web development. Data-
flow diagrams, flowcharts, etc. all have their place and can
aid the planning process. The above issues here are
presented to identify at least some of the areas that need
to be addressed. While following all these suggestions
won’t guarantee you’re system will be a success, it will
certainly improve the odds.

HIKING COMPANIONS

Just as it is safer to go hiking with at least one other
person, developing web applications is usually a team
effort. In addition to the developer role, there are two
additional roles that are needed in web development.
They are the Webmaster and Network Administrator.

WEBMASTER
The webmaster is that person in your organization who is
responsible for your company’s web site. He or she will
help you integrate the application with the general look and
feel of the company’s web site and inform you of other
company policies such as requirements for certain
browsers and compliance with Section 508 (accessibility)
requirements.

However, even when a web application is used only within
an organization, a webmaster’s expertise will come in
handy in making your web pages more usable. Web page
design is a lot more than making a web page look “pretty.”
It’s designing web pages with the awareness of human
behavior. We’ve all experienced web sites that are poorly
designed and difficult to use. The job of the webmaster is
to identify and eliminate any difficulty your pages might
present. Very likely your webmaster will refer you to a
separate person for web design assistance as more than
one person may fill the two roles. For simplicity, this paper
will describe both roles as being done by the webmaster.

The actual users will decide if you application is easy to
use or not. Webmasters will likely be the first person to
look at your system from a user’s perspective. He or she
will not have been immersed in the subject matter as you
have and can look at it with “fresh eyes.” Also, your
webmaster may suggest usability testing to find hidden
problems in your application. Usability testing involves
watching users use the system, noting areas of difficulty
and confusion. At CDC it has proven very insightful in
determining what is and what isn’t obvious to users, and
there have been many surprises.

As an example of the benefit of working with a webmaster,
see Figures 1-3 in Appendix 1. You’ll be able to see a
“before and after“ version of a web page. The “before”
page was done by a programmer’s without much concern
of usability and aesthetics. The “after” version of the web
page was done by the webmaster. Needless to say, the
webmaster’s page not only looks much better, but it is
significantly easier to use.

It’s always a good idea to get the webmaster involved as
early in the development of the project as possible, even if
you’re in the requirements gathering phase. If nothing
else, it shows courtesy to the webmaster and indicates
that you value their input (which you do even if you don’t
know you do). Additionally they may help you with
company policies and/or clearance procedures that can
affect what you do or how you do it. Getting these issues
resolved early in the process may save you time later
down the road.

For more information on usability, see the “Additional
Resources” section at the end of the paper.

5

NETWORK ADMINISTRATOR
The network administrator is the other person who needs
to be involved in the development process. This is the
person who installs and maintains SAS/IntrNet on your
server, provides access to enterprise data, handles
network and firewall security, and other network issues.
While these duties are likely performed by more than one
person in your organization, this paper will refer to those
roles collectively as “the network administrator.”

Before you can begin to use SAS/IntrNet you must interact
with your network administrator because he or she
determines some of the parameters that you need to get
your application to work. In addition to general networking
issues, the network administrator needs to give you at
least these 4 pieces of information:

1. Where do you store your HTML and what is the
URL to use to refer to it?

2. Where do you store your SAS data and
programs? How do you refer to them?

3. What is the name of the SAS/IntrNet “service” to
use?

4. Where is the SAS Broker to run SAS/IntrNet and
how do you refer to it?

These are minimum requirements that you will need to
begin developing your application. Additionally you will
want to talk with your network administrator about test and
production environments and the number of people you
expect to use your system. There are components in
SAS/IntrNet that the network administrator can use (i.e.
Pool Services and Load Manager) to help make the
application run smoothly, depending on the needs of your
application.

Like the webmaster, you’ll want to get the network
administrator involved in the project during the planning
stages to help with issues of security, networks, and other
corporate policies.

TRAINING FOR THE HIKE
Now that you’ve identified where you are, where you’re
trying to go, and whom you’re going to take with you, you
need to get and learn how to use the equipment that you’ll
need. Here is a list of some equipment that you might
consider using on your trip:

• A good text editor
• HTML editor and basic HTML knowledge
• JavaScript References and/or training
• SAS/IntrNet training

TEXT EDITOR
Surprisingly, you might not use the SAS Enhanced Editor
for the bulk of your development work. If your HTML and
SAS programs reside on a server that is not directly
connected with your PC, you may need to use FTP to pass
these files back and forth. While you can use the
Enhanced Editor to do these tasks, there are other tools
that are much easier to use.

UltraEdit (www.ultraedit.com) is a very nice and very
powerful editor that is the preferred choice of many SAS
users for editing text files. Among many other features it
offers syntax highlighting like the Enhanced Editor. Of
particular importance is that it allows you to edit files on
remote server seamlessly. It cost $35 US.

HTML EDITOR AND BASIC HTML EXPERIENCE
An HTML Editor such as FrontPage® or Dreamweaver®
can come in handy when developing the HTML forms that
your application may use. It’s also a good HTML
reference because you can design what you’re trying to do
in the editor and then look at the HTML code that it
generates to see how to do it.

Be sure to consult with your webmaster before proceeding.
FrontPage is one editor that may be incompatible with your
website, and in some cases can cause existing pages to
stop working. However it’s has the same flavor of other
Microsoft products and may be easier to use than
Dreamweaver. Professional web page designers and
webmasters often use Dreamweaver. Also free HTML
editors and HTML tutorials are available on the Internet.

JAVASCRIPT
Another issue that you tend not to worry about in the
ad-hoc environment is input errors, since a programmer is
doing the input. That’s not true of the Internet. Here you
must ensure that the user does not input invalid selections.

 JavaScript is a language that you insert in your HTML
code to extend the capability of HTML. It’s particularly
useful for data validation to ensure that the user does not
put in invalid data in a field or put inconsistent data across
multiple fields (e.g. Sex of ‘Male’ and ‘Is Pregnant” = Yes).

A good technique to use when possible is to have the user
make selections with drop-down menus rather than
textboxes. This ensures that the user doesn’t
inadvertently input an invalid entry, and the user can see
what valid choices are possible.

The advantage of JavaScript is that your browser likely
supports it and there’s nothing to buy. It also ensures that
the data validation part is done at the client’s machine
rather than the server. This speeds up the process a lot
for the user and makes it easier for the programmer. Data
validation at the server level is slower and can be tedious
to code for in that you have to generate your own error
messages in HTML using SAS code. There are many
Internet sites where JavaScript examples and tutorials are
available at no charge. Similarly you could also use Visual
Basic and ASP pages to do the same thing.

It should be noted however that using JavaScript does not
conform to the requirements of Section 508 (accessibility).

SAS/INTRNET TRAINING
Since we’ve assumed that you’ll be creating a web
application using Application Dispatcher, you certainly
would need to know how to use it. There are several

6

approaches, not all of which are mutually exclusive. You
can learn on your own, study examples provided by SAS
or others, or take a training class from a vendor such as
SAS Education Services. Some find Application
Dispatcher difficult at first, but once you learn how things
work it actually is pretty easy.

Trying to condense in a few paragraphs what SAS does in
a three-day class in beyond ambitious, but perhaps it can
be boiled down to the bare minimum. The following shows
you an example of the common “Hello World” program
using SAS/IntrNet. Shown is the HTML (hello.html) and
the SAS code (hello.sas) that you need to do this. Note
that the text in bold is information that you need to get
from the network administrator (see “Network
Administrator” above).

• HELLO.HTML is the HTML for the application and is

stored in /var/apache/htdocs/webnis/hello.html and
is referenced using the URL
http://stat.nip.cdc.gov/webnis/hello.html

• WEBNISP.HELLO.SAS is the SAS code that will run.
WEBNISP is the name that refers to the folder that
HELLO.SAS is in: /projects/webnis/progs/hello.sas.

• default is the value for _SERVICE and refers to the
SAS/IntrNet service that will actually execute the
program.

• http://www.cdc.gov/cgi-bin/broker is the SAS
Broker that is run and refers to the file
/var/apache/cgi-bin/broker

Hello.html

<html>
<FORM action=
http://www.cdc.gov/cgi-bin/broker method=get>
<center>
Enter Name:
<input type=textbox name=TXTNAME size=10>
<INPUT type=hidden
name=_service value=DEFAULT>
<INPUT type=hidden name=_program
value=WEBNISP.HELLO.SAS>
<input type="submit" name="Submit" value="GO">
<input type=hidden name=_debug value=0>
</center>
</form>
</html>

Figure 4 – HELLO.HTML as viewed in a browser.

Hello.sas

ods html body=_webout (dynamic)

 style=styles.sasweb rs=none ;

data _null_ ;
file _webout ;

put @50 "<center> Hello
&TXTNAME</center>" ;

proc print data=sashelp.class(obs=3) noobs ;
title 'A Sample of SASHELP.CLASS'; run ;
ods html close ;

Figure 5 – Output of HELLO.SAS

In Figure 4 when the GO button is pressed, the text that
you entered in the text box is sent to a SAS session as a
macro variable. The name of that variable is the name
defined in the HTML code for the text box: TXTNAME in
this case. That SAS session runs the program named by
the parameter _PROGRAM. The SAS program uses that
macro variable in the PUT statement for the DATA STEP.
If you’re using PUT statements you’ll likely want to add
some HTML to the text to have it formatted properly, but
it’s not required. Using ODS, the output of the PROC

7

PRINT is sent to the screen in HTML format. The resulting
output is displayed in Figure 5. This illustrates the two
ways to create output for your application: DATA STEP
and SAS Procedures.

It can be confusing keeping track of where each file needs
to be stored and how to refer to them, and that’s the
biggest challenge facing the first-time developer. But once
those things are clear in your mind, the main challenge
becomes the SAS code itself. That’s a major strength of
Application Dispatcher is that you can use your existing
SAS skills and create web applications. You do not have
to learn a new language.

“DOING” THE HIKE
Now comes the fun part. All you have to do is to assemble
the tools that you’ve acquired and learned how to use, get
your map detailing the destination and off you go.

FINALLY YOU’RE HIKING
Once you finally start coding, it truly is the easy part for
many since it just involves writing SAS code. Often the
focus is to simply get the application to produce a report
without concerns about input errors, titles and footnotes
and the like. While you must consider those issues prior
to deployment, (see “Finishing the Hike” below), you may
not code for them at this time. You just want to get
something working.

After the response time issues, the biggest challenge that
you have in going from an ad-hoc environment to a web
application will likely be making your code flexible enough
to meet your reporting options. For instance, you may
have the requirement that the application produce overall
reports, reports by sex or race, and reports by sex and
race. To use SAS terminology, you need to report with
zero, one, or two “by” variables. Depending on how you
produce the report and your skill as a programmer, this is
an easy or a very difficult task. One option is to have a
section of code for each type. You’d have one section for
zero “by” variables, a second one for one variable and a
third section for two “by” variables. This accomplishes the
task in a straightforward manner but there are three
different places to change the report. You still will likely
need to use a macro to ensure the correct section
executes, however.

Another choice is to use macros to add the flexibility to the
code for the report. It has a different maintenance cost,
however. What it saves in compactness it adds in
complexity. Your skill and personal style as a programmer
may dictate how you resolve that tension. However, do
not forget that at some point there will be someone else
who has to understand the code you wrote (perhaps even
yourself), so simpler is often better.

LOSING THE TRAIL
Debugging with SAS/IntrNet is not as easy as running
code interactively in Display Manager. In addition to the
normal types of SAS errors that you can get you also may
have problems with SAS/IntrNet itself. Usually these are
caused by misspelling or something similar on your part.
This is where it helps to be on good terms with the network

administrator because he or she can help with identifying
the culprit with these types of problems.

However, there are some steps that you can take to help
minimize the effect of SAS errors in your code. The first is
to write and test blocks of code in Display Manager prior to
incorporating it into your web application. It’s easier to
debug there and it’s a good place to see if the code works.
If it works in Display Manager and not with SAS/IntrNet
you’ve narrowed the problem to SAS/IntrNet.

Secondly it’s a good idea to put a drop-down box on your
HTML Form that allows you to specify the _DEBUG option
you want for each run on the form. The value of _DEBUG
determines what error-checking logs get displayed. A
value of 128 shows you the SAS log while 131 shows you
the SAS log as well as the parameters passed to SAS
from your HTML form. A value of 0 shows neither of
these. Rather than hardcode it into a hidden field as you’ll
do later on, add a drop-down box so you can easily
change it to see the log. Depending on how common your
errors are, you may want to vary the default value of
_DEBUG by moving the HTML word “selected” to the
desired place in the code below:

<P>Debug Option <SELECT size=1 name=_debug>
<OPTION selected>0</OPTION>
<OPTION>128</OPTION>
<OPTION>131</OPTION></SELECT> </P>

This is particularly useful after you’re at the point where
you’re not changing the code as often and you may want
to suppress the log most of the time and only look at it on
the rare times you have problems after changing
something. You’ll remove it before your application goes
production.

Finally, it’s not always easy taking code you’ve written for
SAS/IntrNet and trying it out in another environment such
as Display Manager. You end up needing to specify in a
%LET statement the parameters that would normally come
from your form. You’ll also need to change all of the
references to _webout on your ODS or FILE statements.
You also may have to change any file paths that may be
different.

If you really are stuck, a good technique is to write your
work files to a permanent library so you can see what they
actually contain. Additionally the MFILE option, which
writes your resolved macro code to a file, may be helpful
as well.

FINISHING THE HIKE
Now the hard part. You’ve been writing a lot of SAS code
taking minimal effort concerning issues such as data
validation, input errors, help files, data correctness, and
security. However, each of these areas must be
addressed before you can finish and deploy your
application. And they often will take longer than the work
you’ done up until this point and include:

• Testing
• Security

8

• Help documentation
• Common look and feel
• Print version of report
• Output formats

TESTING
Testing a web application is critically important, especially
for Internet applications. The reputation of your
organization depends on it. Combine that with the fact
that you will not know whom to notify that they got wrong
information and the importance is even more obvious.

However, many programmers do not do sufficient
testing. They assume that the algorithm that they used
will solve the problem. Additionally they assume that their
code correctly implements the algorithm. They can be
wrong on both counts. A good rule of thumb is to assume
that the program does not work and then prove to yourself
that it does.

Testing a web application is different from testing the
results of an ad-hoc report. For one, you may need to test
the data themselves. If you’ve summarized the data for
efficiency’s sake you have to verify that you summarized it
correctly. One technique is to get someone else to create
the data using the same specifications you used, perhaps
using a different method and see if the same results are
produced. This is a good way to find errors in both the
method as well as the actual coding. In addition, if there
are published reports or other sources of verifying the
results they should be used to verify your results.

Another issue is the need to test the HTML form itself.
You must ensure that for every selection that the user can
make, the appropriate action is taken. For instance, if your
form allows the user to select any one of the 50 US States,
you would have HTML code like this:

<input type=checkbox name=state value=GA> Georgia

You need to ensure that if the value of that checkbox (e.g.
“GA”) and the text beside it (e.g. “Georgia”) match. It is
very easy to have a mistake in your HTML form,
particularly if you have many possible entries.

One test that’s easy to forget is to test your application on
different browsers. Minimally you should test on the
current versions of Internet Explorer® and Netscape®.

You want to be as thorough as possible in testing the
application prior to deployment. As some have said, “All
systems are tested for errors. Some prior to deployment,
others afterwards, but all systems are tested. “ Aside from
the obvious benefits you want to avoid that sinking feeling
you get when someone calls with a question about your
application. If you’ve tested it thoroughly you can feel
confident that your application is correct. Thorough testing
before deployment can significantly reduce your
consumption of antacids.

SECURITY

If you’re web application is for internal use only, then
security may not be a big concern. However, if you’re
releasing your application on the Internet there are some
things to be concerned about.

The first thing is to change the METHOD=GET to
METHOD=POST on the <form> statement in your HTML.
The main difference between the two is that with GET,
your parameters display in the address line of your
browser. This is handy for debugging purposes and allows
generated reports to be bookmarked. However, it shows
important details about your application to others and thus
is a security risk.

Secondly, your want to protect yourself from “dirty” input
data: characters such as quote marks that could cause
your application to malfunction. There are two methods for
this. One is using the UNSAFE= option on PROC
APPSRV which the network administrator would control.
The other is by using %SUPERQ macro function and the
SYMGET call routine in the DATA step. Both of these
techniques are designed to nullify the effect of any bad
data. For instance, if you had a text box where a person
could type in a title for a report, that’s a place where the
wrong character can cause problems. If your SAS code
looked like this:

 Title “&mytitle” ;

and the user types in:’ Report” of’ (i.e. embedded an
unpaired quote mark), SAS would resolve the title
statement to the following:

 Title “Report” of“ ” ;

and a syntax error would be generated. You want to avoid
this from happening whether its from malicious or benign
intent. To avoid the above problem, you would code it as
this:

 Title “%SUPERQ(mytitle)” ;

Your network administrator can tell you what characters
are used for the UNSAFE= option for PROC APPSRV. For
more information on security, see the “Additional
Resources” section at the end of the paper.

HELP DOCUMENTATION
One of the most onerous tasks in this whole endeavor is
writing the help file, particularly if your application is going
to be used on the Internet. You pretty much have to spell
out in detail everything that there is to know about the
application including the source of the data, how the
numbers are calculated, when’s new data going to be
added, etc.

Do not underestimate this effort. It can be quite
significant. For the WISQARS application, it took an
estimated 2-3 months of full-time work to complete. Your
webmaster will be able to give you some guidance on the
types of things to include in your help file. However, it is a
big job.

There are several reasons why the help file is useful

9

despite the amount of effort it takes to write it. The first is
that it’s one more check to ensure that you have
accounted for all possibilities that your system should
handle. While you are thinking about some of the
questions that users may want answers to it may occur to
you that you have not adequately accounted for every
possibility. It also may lead to better footnotes on the
reports. It may remind you of missing links between a
term on a web page and its definition in the help file. In
addition, it may force you to learn things about the data
that you never took the time to find out, but need to in
order to write about it.

However, a hidden benefit in developing the help file is
that it helps the IT staff who must maintain the application.
It documents all the business rules and data anomalies
that apply to the system. It is also the first logical choice
for answers to questions about the system. Certainly, it
cannot be the only documentation for the system, but it is
a good start. It can be a big benefit to those who will do
maintenance on the system or work on the data in another
context.

COMMON LOOK AND FEEL
 The web has matured to the point that it’s no longer
acceptable to have pages with a variety of formats within a
given site. Users have come to expect a common look
and feel within a company’s website. However since the
pages are created dynamically the application itself has to
provide that look and feel. Fortunately, there are a
number of easy ways that you can have all your web
pages with a common appearance. Perhaps the best way
is with a DATA step within the application. In its simplest
form, code to give your output a standard header would
use code like this:

 data _null_ ;
 infile “company_header.html” ;
 input @80 text $80. ;
 file _webout ;
 put text $80. ;
 run ;

You could follow this code with whatever other output
mechanism you need, such as PROC REPORT or another
DATA step. A similar set of code could be used for the
footer as well. The advantage of doing it this way is that
you as the developer control it and it’s easy to maintain.
The webmaster can create the header and footer HTML
files for you and they are separate from the SAS code so
it’s easier to maintain.

if your output can vary significantly in terms of width, you
may want to eliminate some objects such as side
navigation bars to have your report format nicely. The
webmaster can help you in making those decisions and
providing you with the file to use for your headers and
footers.

For a more thorough discussion of this subject you may
want to read a paper by this author called Adding A
Common Look and Feel to Web Applications Easily, SUGI
26 Proceedings, and available at:

http://www2.sas.com/proceedings/sugi26/p076-26.pdf

There is an additional technique using PROC TEMPLATE
that is not mentioned in the above paper. It requires that
Server-Side Includes be enabled at your site however, and
not all sites allow this. An example of the code to do this
would be:

proc template;
define style styles.test;
parent=styles.default;
style body from body /
prehtml=
'<!--#include virtual="my_top.html"-->'
posthtml=
'<!--#include virtual="my_bottom.html-->';
 end;run;

ods html body=_webout style=styles.test ;

* Remainder of SAS program follows ;

PRINT VERSION OF REPORT
Users have also come to expect a separate output format
for printing from the normal display format.. The print
format may be as simple as not producing the standard
headers and footers described in the common look and
feel section above. The same issues of maintenance and
complexity as described in Section III, “Doing” the hike
apply. You may want to sacrifice complexity by having
multiple places to make changes or vice-versa.

It is also a good idea to provide the choices that the user
made to create the report at the bottom of the report,
particularly for printed versions. That way they can know
how the report was created and recreate it precisely
should the need arise.

OUTPUT FORMATS
ODS has made the ability to provide output in different
formats relatively easy. You can output your reports with
HTML, PDF, RTF, and Microsoft® Excel® formats.
Information on producing output in HTML, PDF, RTF and
Excel can be found at
http://support.sas.com/rnd/base/topics/templateFAQ/Temp
late_special.html#S18A . Additionally you can provide the
data in a comma-separated value (CSV) format for those
who do not have Excel and/or want to read the data using
other software. More information on creating CSV files
can be found at
http://support.sas.com/techsup/unotes/SN/009/009460.html .

CONCLUSION
Web development using Application Dispatcher is a
rewarding alternative to the generation of ad-hoc requests.
The users get access to more data in more ways with
faster turnaround. And the IT staff exchange the routine of

10

ad-hoc requests for the new challenge of maintaining a
web application. There are a number of things to
consider and it’s not necessarily a simple task, but the
result is a product that will be enjoyed by all.

ACKNOWLEDGEMENTS
I would like to thank Chevell Parker and David Shinn of
SAS Institute for their technical assistance in this paper.

I would also like to thank Maggie Reilly, Colleen Jones,
Dionne White, Bob Thomas, Sharon Clanton and Van
Munn of CDC for their help in preparing this paper.

ADDITIONAL RESOURCES

Other papers on web development
(Web) Software Development: Best Practices for
Developing Enterprise Applications
Greg Barnes Nelson, Danny Grasse,
http://www2.sas.com/proceedings/sugi27/p042-27.pdf

SAS/IntrNet® Software: A Roadmap. A white paper
written by SAS is available at:
http://support.sas.com/documentation/whitepaper/downloa
ds/44758_0901.pdf

Usability Testing for WISQARS
Lessons Learned from Discount Usability Engineering for
the US Federal Government, Jones, Colleen, Technical
Communications Volume 50, Number 2, May 2003.
 For an electronic copy of this article, please email Steve
James at the address at the end of this paper.

A Look at the Development Process for a SAS/IntrNet®
Application, SUGI 27, Andrew Rosenbaum, Venturi
Technology Partners, Kalamazoo, MI
http://www2.sas.com/proceedings/sugi27/p039-27.pdf

SAS web pages on security:
General Information
http://support.sas.com/rnd/web/intrnet/dispatch/security.html

Developer options for cleansing input data.
http://support.sas.com/rnd/web/intrnet/dispatch/receive.html.

Administrator options for cleansing input data
http://support.sas.com/rnd/web/intrnet/dispatch82/procapp.
html#unsafe.

TRADEMARK CITATION
Netscape is a trademark of Netscape Corporation.
Dreamweaver is a registered trademark of Macromedia
Corporation. Microsoft, Excel, FrontPage and Internet
Explorer are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other
countries.

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

CONTACT INFORMATION
Your comments and questions are particularly valued and
encouraged. Contact the author at:

Steve James
 Centers for Disease Control and Prevention
 1600 Clifton Road NE, MS-E57
 Atlanta, Ga. 30333
 (404) 639-6041 (voice)
 (404) 639-8555 (fax)
 sjames@cdc.gov

11

Appendix 1

Figure 1: A Programmer’s attempt at designing web page

Figure 2: A Webmaster’s first attempt at designing a web page (1 of 2)

12

Appendix 1 (continued)

Figure 3: A Webmaster’s first attempt at designing a web page (2 of 2)

